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Extended state-space Monte Carlo methods
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In this paper various extensions of the parallel-tempering algorithm are developed and their properties are
analyzed. The algorithms are designed to alleviate quasiergodic sampling in systems which have rough energy
landscapes by coupling individual Monte Carlo chains to form a composite chain. As with parallel tempering,
the procedures are based upon extending the state space to include parameters to encourage sampling mobility.
One of the drawbacks of the parallel-tempering method is the stochastic nature of the Monte Carlo dynamics
in the auxiliary variables which extend the state space. In this work, the possibility of improving the sampling
rate by designing deterministic methods of moving through the parameter space is investigated. The methods
developed in this article, which are based upon a statistical quenching and heating procedure similar in spirit
to simulated annealing, are tested on a simple two-dimensional spin system (xy model! and on a modelin
vacuopolypeptide system. In the coupled Monte Carlo chain algorithms, we find that the net mobility of the
composite chain is determined by the competition between the characteristic time of coupling between adjacent
chains and the degree of overlap of their distributions. Extensive studies of all methods are carried out to obtain
optimal sampling conditions. In particular, the most efficient parallel-tempering procedure is to attempt to swap
configurations after very few Monte Carlo updates of the composite chains. Furthermore, it is demonstrated
that, contrary to expectations, the deterministic procedure doesnot improve the sampling rate over that of
parallel tempering.

DOI: 10.1103/PhysRevE.63.056701 PACS number~s!: 02.70.Rr, 05.10.Ln
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I. INTRODUCTION

Over the years, Markov chain Monte Carlo~MC! methods
@1# have evolved into an important and commonly used t
for evaluating expectations of observables with respec
some distribution. In particular, MC methods have been
quently utilized in the field of statistical physics to evalua
equilibrium and nonequilibrium ensemble averages in s
tems where other methods, such as molecular dynam
yield relatively poor estimates@2#. MC methods are based o
the construction of a Markov chain of configurations of t
system, in which the probability of each configuration in t
chain is determined by a targeted distribution. If all points
the state space are accessible in the Markov chain, then
erages over the chain sequence converge to expectations
respect to the target distribution as the length of the Mar
chain goes to infinity. However, there is no guarantee t
the estimates of the expectations converge quickly and
sometimes is faced with physical systems in which accu
estimates require Monte Carlo chains of intractable leng
Such a situation typically occurs when movement of
Markov chain through state space is inhibited by regions
low probability, leading to configurational trapping in iso
lated modes of the system@3#. Such ‘‘quasiergodic’’ sam-
pling is often observed in simulation studies of systems d
playing first-order phase transitions@4# or in systems
exhibiting frustration and rough energy landscapes~spin
glasses@5#, conformational studies of biological molecule
@6#!.

Over the last few years a number of importance samp
techniques have been developed to improve the rate of
vergence of Monte Carlo calculations for systems exhibit
quasiergodic behavior. Most approaches have been base
widening the sampling distribution using umbrella-sampli
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techniques@7# or other generalized ensemble methods, su
as multicanonical methods@8#. Recently, a sampling schem
known as parallel tempering@9# has been proposed which
designed to increase the mobility of the Markov chain
sampling on an extended state space. These algorithms
one major drawback in common: The exploration of aux
iary parameter space can be mapped onto a stochastic
cess, resulting in a nondeterministic Monte Carlo dynam
over the width of the generalized distribution. For syste
with very rough energy landscapes and deep metast
minima, the sampling distributions must have sufficie
width to allow for migration out of these minima. Since th
exploration is stochastic in nature, the migration from o
tail region of the distribution to another tail region can take
prohibitively long time.

In this article, we examine the feasability of improvin
the sampling rate of parallel tempering Monte Carlo simu
tions by incorporating a method of guiding the extended s
tem through the auxiliary parameter space in a determini
fashion to promote the swapping of configurations a
thereby the exploration of configurational space. T
method, termed ‘‘annealed swapping,’’ is based upon
combination of annealed-importance sampling@10# and mul-
tiple Markov chain methods@11#. The annealed-swappin
algorithm is tested on two model systems which are cha
terized by rough energy landscapes. It is shown that
method does not lead to greater sampling mobility than t
exhibited by the simple parallel-tempering algorithm in sp
of the increased directionality of the dynamics in the e
tended state-space. In the following section, various
tended state space Monte Carlo algorithms are presented
discussed in detail. In Sec. III, the methods are tested
compared on a simple two-dimensional spin system (xy
model! and a model system composed of a single, t
©2001 The American Physical Society01-1
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SHELDON B. OPPS AND JEREMY SCHOFIELD PHYSICAL REVIEW E63 056701
residue polyglycine chainin vacuo. The results of the nu-
merical study of the algorithms are summarized in Sec.

II. ALGORITHMS

A. Quenched importance sampling

The simulated quenching procedure@10# is generally used
to investigate structure on glassy energy hypersurfaces w
are characterized by many deep metastable attractive ba
In biological structure applications, the algorithm allows o
to identify important low-energy structures and is sometim
capable of finding the minimum-energy structure. Howev
one of the drawbacks of the simulated quenching proced
@10# is that statistical information about the relative statisti
importance of each structure is not accessible. A Mo
Carlo calculation, on the other hand, provides a form of i
portance sampling which, in principle, enables ensemble
erages to be calculated. However, typical realizations
simple Monte Carlo schemes, such as the Metropolis Mo
Carlo scheme, spend long periods of time sampling relativ
small regions of configuration space and only rarely move
other regions. Because of the poor mobility of Mark
chains, the calculations converge very slowly to the corr
ensemble averages.

Recently, a Monte Carlo algorithm@12# incorporating
Markov chain transitions has been developed which use
procedure similar to simulated quenching. Unlike the ori
nal implementation of simulated quenching, the ‘‘quench
importance-sampling’’ algorithm calculates statistic
weights for the quenching process which permits an imp
tance sampler to be defined. The algorithm therefore of
an approach which retains the benefits of a quenching
cess while permitting thermodynamic functions and stati
cal averages to be calculated.

The basic principles of the quenched importan
sampling algorithm are a combination of previous metho
namely, a quenching schedule in which one moves from
tractable distribution~such as a high-temperature Boltzma
distribution! to a target distribution via a sequence of inte
mediate distributions and the use of an extended state s
@9,11#. Consider the expectation of an observablea(x) with
respect to a distributionP0(x):

ā5E dxa~x!P0~x!, ~1!

wherex is a possibly multidimensional point in state spac
Expectations such as Eq.~1! are often evaluated usin
importance-sampling methods in which one samples a fi
numberN of points xi from some distributionPs and ap-
proximates the expectation as

ā'

(
i 51

N

w( i )a~xi !

(
i 51

N

w( i )

, ~2!
05670
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wherew( i )5P0(xi)/Ps(x
i) is the statistical weight of sampl

point xi . Quenched importance sampling uses a Mark
chain of configurations~path! generated along a quenchin
schedule to produce the independent sampling pointsxi with
weights which depend on the path. The quenching com
nent of the sampling procedure consists of the use of a se
of intermediate distributionsPj with j 51, . . . ,n to construct
the sampling point. The Markov chain transitions for ea
distribution are represented by functionsTj (x1→x2) giving
the probability~density! of moving to statex2 from the state
x1. We will assume that theTj Markov transition probabili-
ties obey a detailed-balance condition and have a co
sponding limiting distributionPj so that eachTj generates a
sequence of states according to this distribution. T
quenched importance sampling is carried out as follows.

~i! Generate a state pointxn according to the distribution
Pn .

~ii ! Carry out a Markov chain Monte Carlo simulatio
according to the distributionPn21 starting fromxn and end-
ing in statexn21 utilizing some updating scheme~such as
Metropolis!.

~iii ! Repeat the previous step for all intermediate distrib
tions j 5n22, . . . ,1.

~iv! Set the initial sampling pointxi5x1 and calculate the
weight factor for this point, given by

w( i )5
Pn21~xn!

Pn~xn!

Pn22~xn21!

Pn21~xn21!
•••

P1~x2!

P2~x2!

P0~x1!

P1~x1!
. ~3!

~v! Repeat steps~i!–~iv! N times to generate the set o
independent sampling points used to calculate the averag
Eq. ~2!.

The validity of this method is demonstrated in Append
A. To obtain better estimates for the observables, theN
sampled pointsxi can also be used as initial states for
Markov chain Monte Carlo simulation which has the targ
limiting distribution P0. The expectation valueā can be cal-
culated as weighted averages, using thew( i ), of the simple
average ofa(x) along the Markov chains which start from
the sampled initial points.

B. Parallel tempering

Another method for increasing the rate of exploration
configuration space is based on sampling along a set of M
kov chains run in parallel. This approach, and minor va
ants, has been called ‘‘multiple Markov chains’’@13,14# or
‘‘parallel tempering’’@15,16# in the literature. The basic ide
of the parallel-tempering algorithm is that the mobility
isolated Markov chains with different limit distributions ca
be enhanced by coupling them together to form a compo
Markov chain whose limit distribution is the product distr
bution of the separate chains. The method works particul
well for chains in which the convergence is slow, since t
other chains in the composite chain which have greater
bility act as a randomizing heat bath which destroys corre
tion.

This algorithm, which we shall refer to as ‘‘simple swa
ping,’’ is implemented as follows:N chains, with limit dis-
1-2
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EXTENDED STATE-SPACE MONTE CARLO METHODS PHYSICAL REVIEW E63 056701
tributions P1 , . . . ,PN spanning a range of parameters~such
as temperature!, are evolved using a standard Monte Ca
updating scheme simultaneously and independently for s
number of updatesNup. The number of updates can be fixe
or chosen from a distribution. After theNup updates, two of
the chainsi and j with corresponding limit distributionPi
and Pj are selected at random and one tests to see if
current configurations on the chains can be swapped. S
pose that when the swap is attempted the states on thi th
and j th chain arexi andxj , respectively. If one accepts th
attempted swaps with probabilityPA

S( i→ j ) given by

PA
S~ i→ j !5minS 1,

Pi~xj !Pj~xi !

Pi~xi !Pj~xj !
D , ~4!

the composite Markov chain for the entire process has
limit distribution P1•••PN and each of the elementary o
principal chainsi has limit distributionPi , as if it were
entirely isolated. However, the swapping induces coupl
between these principal chains and they are not indep
dently Markov. In practice, it is often best to select on
adjacent chainsi and i 61 to test for swapping, as the prob
ability of acceptance vanishes as the overlap of the limit
of the chainsi and j decreases.

One might think that a large number of principal chains
optimal because the swap acceptance ratios will be la
This, however, is not necessarily true since in the limit of
infinite number of principal chains, where the swap acc
tance ratios are essentially 1, a given configuration evo
in parameter space in a random walk. For systems suc
protein-folding studies or the study of collapse transitions
polymer models, which require a large range of temperatu
due to the depth of the attractive basins in the potential
ergy surface, the diffusive nature of the algorithm may le
to slow exploration of the entire parameter space. It is the
fore worthwhile to consider variants of the simple-swapp
algorithm in which the exploration of the parameter space
not diffusive.

C. Annealed swapping

One means of circumventing diffusive exploration is
develop a Monte Carlo updating scheme in the general
state space~state space plus the parameter space! which en-
ables configurations on adjacent chains to be swapped
non-negligible probability. This may be achieved by co
structing an updating scheme utilizing an annealing sche
which includes both a quenching procedure, such as the
described in Sec. II A, and an analogous heating meth
Such an annealing process, which we shall refer to as ‘
nealed swapping,’’ can be incorporated into an updat
scheme as follows: Suppose at a given iteration in the M
kov chains the state of the system on chain 1 with limiti
distributionP0 is x0 and the state of the system on chainN
with limiting distributionPN is xN . First one decides upon
set of n intermediate distributionsP1 , . . . ,Pn , wheren is
some positive integer greater than or equal to 2, which in
polate betweenP0 and PN , with P1[P0 and Pn[PN .
These distributions scan a range of the parameter space,
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as temperatures. The updating scheme consists of quenc
~cooling down! from the configurationx̌n5xN along all the
intermediate distributions with a standard updating sche
for a specified number of steps, ending with distributionP1

5P0. Simultaneously, the configurationx05 x̂1 is heatedup
along the set of intermediate distributions, ending with d
tribution Pn5PN . These procedures generate a set of int
mediate configurations. For example, the quenching proc
may generate the set$x̌n ,x̌n21 , . . . ,x̌1% with statistical
weight w̌, wherew̌ is defined as in Eq.~3!,

w̌( i )5
Pn21~ x̌n!

Pn~ x̌n!
•••

P1~ x̌1!

P2~ x̌1!
. ~5!

The heating procedure may generate the set$x̂1 ,x̂2 , . . . ,x̂n%
with statistical weightŵ defined analogously:

ŵ( i )5
P2~ x̂1!

P1~ x̂1!
•••

Pn~ x̂n!

Pn21~ x̂n!
. ~6!

In the heating procedure, the statex̂2 is generated by carrying
out a specified number of simple MC updates, starting fr
the statex̂1, according to the limiting distributionP2. At the
end of these processes, one accepts the trial statex̌1 as the
new state for chain 1 and the statex̂n as the new state fo
chainN with probability

PA
A5min~1,ŵ3w̌!. ~7!

The annealed-swapping method is schematically depicte
Fig. 1 for two principal chains. It is demonstrated in Appe
dix B that this updating scheme obeys detailed balance
the composite Markov process and that each principal ch
has the correct limiting distribution. Note that for the spec
case of no intermediate distributions (n52), the procedure
described above is precisely the simple-swapping algorit
It is also interesting to note that the process described ab
may be modified slightly if one is interested in only on
target distribution. In this case, the algorithm describes
MC updating scheme for the target chain constructed
linking heating and quenching processes~connecting the

FIG. 1. A schematic of the annealing path$x̂1 ,x̂2 ,x̌2 ,x̌1%. The

solid lines indicate Monte Carlo updates according toT̂i and Ťi .
1-3
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SHELDON B. OPPS AND JEREMY SCHOFIELD PHYSICAL REVIEW E63 056701
statesx̌2 with x̂2 in Fig. 1! into a continuousannealing cycle,
known as tempered transitions@17#.

The annealed-swapping process over intermediate di
butions is incorporated to ensure thatPA

A( i , j )@PA
S( i , j ) for

adjacent principal chainsi and j. The increased mobility in
parameter space comes with a computational cost due to
intermediate updating steps along the heating and quenc
paths. Increasing the number of intermediate distributions~or
intermediate updating steps! in the annealed-swapping algo
rithm typically increases the parameter space mobility wh
increasing the computational time per updating step. Th
factors must be balanced against one another on a cas
case basis in order to optimize the performance of the a
rithm. It is important to recognize that there is a qualitati
difference between the annealed-swapping algorithm and
simple-swapping procedure. The incorporation of heat
and quenching processes into the updating scheme prov
a directedway of increasing the rate of parameter space~and
thereby configurational space! exploration, unlike the
simple-swapping scheme in which the exploration of para
eter space is a random-walk process at best.

There are a number of adjustable parameters which
effect the efficiency of the algorithm on a particular mod
One may vary the number of principal chains comprising
composite system as well as how the chains are distribute
parameter space. It is also possible to vary the form of
distributions used for each principal Markov chain to inco
porate umbrella-sampling@7# distributions in the annealed
swapping algorithm. In addition, the number of intermedi
heating and quenching chains, the number of equilibra
steps at each intermediate distribution, and the selection
cess for choosing the pair of initial principal chains to he
and quench may be optimized for each model. In the n
section, we investigate these issues on both a simple
dimensional spin system and a ten-residue,in vacuo poly-
glycine molecule.

III. RESULTS

A. xy model

In thexy model, spins~or planar magnets! of magnitudeS
are fixed in thexy plane with orientations specified by a
anglef i (0<f i,2p) with respect to thex axis. The spins
interact via a coupling constantJ according to the Hamil-
tonian,

H52JS2(̂
i j &

cos~f i2f j !, ~8!

which is invariant to global rotations. For the present
search, the system consisted ofNs5100 spins arranged on
square lattice. Each spin was allowed to interact with its f
nearest neighbors.

Simulations were performed utilizing the anneale
swapping algorithm on a set of chains spanning a temp
ture range of 200–800 K. Although the annealed-swapp
method is designed to be implemented in parallel on a clu
of computer nodes, thexy model was sufficiently fast to run
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in serial mode on alpha workstations. For more complex s
tems, such as for the peptide chains discussed below, the
significant gain in utilizing the parallel design. The tot
number of sweeps was set to 13106, where each sweep
roughly consists of updating the orientations of the 100 sp
in the system (513108 updates in total!. It is convenient to
reexpress the total number of updates for the simulation
terms of the number of steps per swap attempt which, fon
intermediate chains withm updates along a chain, consists
2mn steps.

To determine the optimal combination of the above p
rameters and as a means of monitoring the efficiency of
algorithm, the ‘‘trajectory’’ of a composite Markov chai
was followed as it cycled from lowest to highest tempe
tures. A single cycle was measured as the completed p
beginning at the lowest temperature, traversing to the hi
temperature chain, and finally returning to the lowest te
perature. It was determined that the number of cycles
CPU second, from here on referred to as the ‘‘mixing rate
was optimized for a system ofN53 principal chains~corre-
sponding toT5200, 500, and 800 K!, n580 intermediate
distributions ~threads!, and m5400 updating steps alon
each thread. For 13108 total updates, this corresponds
;781 total swaps with 128 000 updates per swap. Note
although increasing the number of intermediate threads
proves the overlap between adjacent principal chains,
must balance this improvement against the increased co
CPU time.

In order to compare with the annealed-swapping te
nique, simulations were also executed for the simple-sw
method with the total number of updates held constant.
simple swapping, the number of principal chains,N, and the
number of updates,m8, along a chain were also adjustab
parameters. It was observed that the greatest mixing r
were obtained by performing many swap attempts with sh
updating~along a particular chain!. We anticipate that this is
a general characteristic of the method and is not system
pendent. The number of cycles per second was optimized
6 chains~corresponding toT5200, 280, 390, 500, 630, an
800 K! with m8520 updates per swap along a princip
chain, giving a total of 833 333 swaps with 120 total ste
per swap. Although the swap acceptance ratios were q
small (;8%), thecomposite chain thoroughly explored th
full temperature range and only occasionally became trap
within a given temperature interval.

There are a number of observables that can be use
compare the efficiency of the different simulation metho
We have chosen to monitor the potential energyU, heat ca-
pacity Cv , and the orientational order parameterSxy , de-
fined as

Sxy5^Sx̄
21Sȳ

2&1/2, ~9!

where

Sx̄5
1

Ns
(
i 51

Ns

Sxi , ~10!
1-4
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EXTENDED STATE-SPACE MONTE CARLO METHODS PHYSICAL REVIEW E63 056701
with Si representing the orientation of a given spini in thexy
plane. Note that for the ordered state, corresponding to
formly aligned spins, the system has continuous rotatio
symmetry. This order parameter has the property that
independent of the direction of alignment and is ofO(1).
For the disordered state,Sxy is O(1/ANs). In Fig. 2, we
display the time-series evolution~first 50 sec! of the order
parameter for a given composite chain using the annea
swapping algorithm. The actual pathway of the cha
through the different temperature indices~05low tempera-
ture, 25high temperature! is also included for reference. It i
clear that the order parameter ‘‘follows’’ this pathway: as t
chain reaches high temperature, the spins become disord
and at low temperature the system is ordered. The co
sponding history of the potential energy can be seen in
3.

By tracking the states associated with a given tempera
index, one can also monitor the potential energy for an in
vidual chain. Additionally, the probabilities or weights fo
swapping between two adjacent chains may be recorded
Fig. 4, the histograms of such weights are presented for b
simple and annealed-swapping routines. Note that for
nealed swapping there is an appreciable fraction of the
tribution which is greater than zero, indicating significa
overlap between the chains and higher swap acceptanc
tios. In contrast, the simple-swap distribution is predom
nantly below zero and results in very small acceptance p
abilities. The improved overlap between chains for t
annealed-swapping method allows for greater mobility of
composite chain and is one of the attractive features of
method. However, it has been determined that there is on
marginal difference between the mixing rates for the t
algorithms. This is demonstrated through the autocorrela
function for Sxy , which is plotted in Fig. 5 for both algo
rithms. Observe that the correlations decay more rapidly
the simple-swapping method compared to the anne
swapping.

FIG. 2. The time-series evolution~first 50 sec! of the order
parameterSxy for a single composite chain using the anneale
sampling algorithm with thexy model.
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Thus, although the annealed-swapping algorithm affo
greater overlap between neighboring chains, the sim
swapping method results in a faster mixing of the chai
despite smaller acceptance probabilities. A possible expla
tion for these discrepancies is that, although the anne
swapping results in greater overlap between chains, there
greater CPU cost for swap attempts. For annealed swapp
much time is expended performing standard updating on
intermediate chains. If the move is rejected, then much w
is wasted since the weights generated on the intermed
threads are not utilized. Thus, in this scheme, failed attem
are quite costly. In contrast, for simple swapping, fail
swap attempts are computationally cheaper than accepte
tempts~which require a shuffling of temperatures and cha
labels!, since no updating is required. One can take adv
tage of this mismatch by attempting more frequent sw

-

FIG. 3. The history~first 50 sec! of the potential energy for a
single composite chain with the annealed-sampling algorithm us
the xy model.

FIG. 4. The distributions of the logarithm of the weights o
tained from simulations of thexy model for both annealed an
simple swapping.
1-5
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SHELDON B. OPPS AND JEREMY SCHOFIELD PHYSICAL REVIEW E63 056701
moves, which, although resulting in lower acceptance rat
allows for greater mixing of the chains per CPU second.

To reduce the number of failed swap attempts and
prove the acceptance probabilities for annealed swapp
one can increase the numbern of intermediate threads an
adjust the numberm of updates. However, this also comes
a cost due to the increased time for regular Metropolis
dating. As mentioned above, we have performed deta
analysis and ascertained that there is an optimal numbe
intermediate chains, beyond which one finds diminishing
turns. Note that these findings are not altered by modifi
tions of the standard updating scheme along an individ
chain. For instance, we have incorporated hybrid MC upd
ing as a means of improving the mobility along an individu
chain, but this did not lead to an improvement in the cyc
per second, since the time required for updating along
intermediate chains remained roughly the same as for s
dard Metropolis MC updates. Variants of the anneal
swapping method have also been tested. A method w
involves a hybrid mix of both simple and annealed swapp
led to an increase in the number of cycles per second, bu
not surpass the mixing rates for the simple-swapping met
alone.

If one is solely interested in a single target distributionP0
which has a number of isolated modes, then the quenc
method outlined in Sec. II A is a perfectly valid procedu
Recall that this method allows one to generate a sequenc
statesx1, . . . ,xN distributed according toP0 with associated
weights w1, . . . ,wN. In order to accurately calculate ave
ages, as given in Eq.~2!, it is required that the state space
well sampled, implying a fairly uniform distribution o
weights. For comparative purposes, the procedure was te
by quenching from the high-temperature to the lo
temperature chain. One of the key findings was that on
small fraction of the weights gave an appreciable contri
tion to the average in Eq.~2!. A scatter plot of the weights
versus the final energies, as seen in Fig. 6, illustrates ano
shortcoming of the method. Observe that there is consi

FIG. 5. The spin-spin autocorrelation function calculated fro
simulations of thexy model for both annealed- and simple
swapping algorithms.
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able dispersion in the energies for fixed weight, which i
plies significant memory effects and would lead to large va
ances and poor estimates of the average.

B. Peptide model

The xy model is a useful diagnostic for comparing th
various algorithms, since it is relatively fast and exhib
many of the features of interest. However, it is useful
consider more complex models in order to gauge the ef
tiveness of these methods.

We have performed simulations on gly10, a peptide co
posed of ten glycine residues, in which the CH2 methylene
groups were treated as single monomer units under
united atom scheme. The potential energy function emplo
consists of both nonbondedVnb and bondedVb interactions
which are based on the classical ‘‘Charmm’’ potentials@18#.
The nonbonded potentials include van der Waals and e
trostatic interactions,

Vnb5(
i , j

8 S Ai j

r i j
12

2
Bi j

r i j
6

1
Kdqiqj

r i j
D , ~11!

where the prime indicates a reduced sum over all pairs
atoms spaced by at least four bonds andAi j andBi j are the
Lennard-Jones parameters. Note that the hydrogen-bon
teractions are incorporated into the electrostatic interacti
with dielectric constantKd5332.0638 (Kcal Å )/mol. The
bonded potentials include bond length (bl), bond angle
(ba), proper dihedral (pd), and improper dihedral (id) in-
teractions,

Vb5 (
i 51

N21

Ki
bl~bi2bi

0!21(
i

Nba

Ki
ba~u i2u i

0!2

1(
i

Nid

Ki
id~g i2g i

0!21(
i

Npd

(
n50

3

Ki ,n
pdcos~nf i !, ~12!

FIG. 6. A scatter plot of weights vs energy for a simulatio
utilizing quenched importance sampling with thexy model.
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where the maximum values for the various force consta
are given asKmax

bl 5640 Kcal/(mol Å 2), Kmax
id 5147 Kcal/

mol, Kmax
ba 5123.5 Kcal/mol, andKmax

pd 56 Kcal/mol.
Based upon the relative strengths of the bonded term

Eq. ~11!, the magnitudes of the various types of trial mov
in a simulation can be ordered according to the followi
scaling:

Dbmax

b0
,

Dcos~umax!

p
;

Dvmax

2p
5

Dgmax

2p
!

Dfmax

2p
, ~13!

where Dbmax, Dcos(umax), Dvmax, Dgmax, and Dfmax
correspond to the maximum displacements for the b
length, cosine of the bond angle, peptide-bond dihedral,
proper dihedral, and ‘‘soft’’ backbone dihedral degrees
freedom, respectively. For the present study, the b
lengths were constrained to their ground-state values and
peptide-bond dihedrals were set top.

Simulations were performed with the annealed-swapp
method and, for comparison, the simple-swapping algorit
over a temperature range of 400–1000 K. The total num
of MC steps for the simulations was 53107 with a burn-in
length of ;13103 steps. For the annealed-swapping sim
lations,N53 principal chains~with T5400, 600, and 1000
K! were used withn580 intermediate threads andm5156
updating steps along each thread, corresponding to 1
swaps with 53104 total updates per swap. The simpl
swapping runs utilized 6 principal chains~with
T5400,470,550,650,800,1000 K! with 50 updates per swa
along a chain, giving 166 666 swaps with 300 steps
swap. Although the temperature range for these studies
comparable to those for thexy model, the swap acceptanc
ratios were considerablyhigher despite the relatively shor
updating. These issues will be elaborated upon below.

Of the various thermodynamic quantities which were c
culated during the simulations, we focus on the poten
energyU and the radius of gyrationRg , defined as

Rg
25

1

Mt
K (

i 51

N

Mi~Ri2Rc.m.!
2L , ~14!

where Mi is the mass of atomi, Mt5( iM i , Rc.m. is the
center of mass of the system, and the summation is ove
the N atoms in the peptide. This order parameter give
measure of the ‘‘size’’ of the peptide, which for a rando
coil scales as;AN. In Fig. 7, data are presented forRg for a
particular composite chain utilizing the annealed-swapp
procedure. Observe that at low temperatures the pep
adopts a compact structure and at higher temperatures
chain becomes more extended. Although the radius of g
tion is insensitive to changes in confirmations at low te
peratures, it is evident that the composite chain samples
full temperature range and becomes thoroughly mixed.

To compare the annealed and simple-swapping meth
we consider the weights associated with swapping betw
two adjacent chains. The histograms of these weights
plotted in Fig. 8. There is a significant proportion of th
annealed-swapping distribution which lies greater than z
resulting in good overlap between the chains. Although
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mean of the simple-swap distribution is located well belo
zero, the distribution is skewed and has a relatively long
extending greater than zero. This long tail results in som
what larger acceptance ratios than those obtained in thexy
model, as noted above. Despite better overlap between a
cent chains for the annealed-swapping procedure, the mi
rates are an order of magnitude smaller than for the sim
swapping algorithm, in sharp contrast to thexy model. These
differences can be seen through the autocorrelation func
for Rg , presented in Fig. 9. Note that the correlation time
the annealed-swapping method is significantly greater t
that for the simple-swapping procedure.

Hence, despite better overlap between adjacent chains
annealed-swapping technique did not perform as well as
simple-swapping algorithm and the discrepancy between
two methods was much greater for the peptide model co

FIG. 7. The time evolution of the radius of gyration,Rg , for a
single composite chain for a simulation of gly10 employing t
annealed-sampling method.

FIG. 8. Histograms of the logarithm of weights obtained fro
simulations of gly10 for both the simple- and annealed-swapp
methods.
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pared to thexy model. It was anticipated that the increas
complexity of the peptide model would result in a decrea
in the mixing rates for both sampling methods, but that
ratio of these rates would remain constant. To test this
pothesis, additional simulations were executed with thexy
model where a larger neighbor list was employed (;18
neighbors per spin!. The increased computational effort r
sulted in a decrease in the number of cycles per second
both sampling methods, but the ratio of the mixing ra
remained approximately the same.

The lack of such scaling invariance between the mod
might be explained by differences in the sampling meth
ology. In the simulation of thexy model the procedure fo
updating in the system was adjusted to ensure accept
ratios of roughly 30%, which should yield optimal mobilit
~for single-variable updates! at each of these temperature
Such tuning is difficult to implement in the simulations
the peptide system since differenttypesof updates are ex
tremely important at different temperatures to obtain optim
mobility. The lack of adjustment of updating schemes in
peptide simulation leads to significantly different accepta
ratios for each principal chain, resulting in a mismatch in
swapping acceptance ratios and poorer overall mobility
the composite Markov chain. For the annealed-swapp
routine, decreased exploration along a given chain tend
exacerbate hysteresis effects with the composite chain
coming trapped within a certain temperature interval. It
believed that such bottlenecking contributes to the dram
cally slower mixing rates and is responsible for the ma
change in the ratio of mixing rates between the two mod

To support or refute these ideas, additional simulatio
were run with thexy model, where the maximal displace
ment in the anglef was reduced in magnitude and set to t
same value for all temperatures. It was observed that
ratio of mixing rates became comparable to that for the p
tide model where, again, the swapping mismatch ha
greater effect on the performance of the annealed-swap

FIG. 9. The autocorrelation for the radius of gyration calcula
for simulations of gly10 for both annealed- and simple-swapp
algorithms.
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technique with a significant decrease in the mixing ra
These results indicate that differences in the mixing ra
between the models are most likely due to details of
sampling procedure. By adjusting the peptide simulation
incorporate different updating schemes for each temperat
it is anticipated that the ratios of mixing rates will be simil
for the two models. However, it is also possible that fund
mental differences in the models govern the behavior of
swapping and lead to deviations in the mixing rates. It
conceivable that the energy landscape for the peptide m
is much ‘‘rougher’’ than thexy model and there is a greate
propensity to become trapped in metastable states. Unfo
nately, without more knowledge about the details of the
ergy landscapes, it is difficult to test this hypothesis.

IV. CONCLUSIONS

In this article, a number of extended state-space Mo
Carlo algorithms which generalize the parallel-temper
method have been examined. These methods have bee
signed to incorporate a deterministic procedure to sam
over the auxiliary parameter space in order to test whe
directed motion can improve the sampling rate over that
served in parallel tempering~here called simple swapping!.
In the present study, the deterministic procedure was ba
on heating and quenching procedures, which resemble
simulated annealing method. However, unlike the simulat
annealing algorithm, the directed heating and quenching p
cedures allow statistical information to be recovered a
thereby permit an importance sampler to be formulated
should be mentioned that canonical jump walking~CJW!
@19# is another sampling method which shares the determ
istic character of the annealed swapping algorithm. Howe
it can be rigorously shown that CJW does not satisfy deta
balance and is only approximately correct in the asympto
limit of a very long auxiliary chain. As such, there is n
guarantee that, for finite-length simulations, one has obtai
the correct limiting distribution. In contrast, as demonstra
in Appendix B, the annealed-sampling method does sat
detailed balance.

Although the annealed-swapping procedure increases
swap probability by effectively improving the overlap of th
energy distributions of adjacent chains, it was shown that
both thexy and peptide models the mixing rates were grea
for simple-swapping. We interpret this remarkable result a
reflection of the robustness of the simple-swapping meth
The deviations in the rates also increased for the pep
model, where the annealed swapping had significan
slower mixing, but such discrepancies may be attributed
differences in the sampling methodology. Modifications
the peptide code, although not trivial, should allow for rati
of mixing rates which are comparable to those obtained
the xy model. Nonetheless, even for thexy model, the lack
of any order-of-magnitude improvement in the performan
of annealed-swapping compared to simple swapping mus
explained. With annealed swapping, a large percentag
the CPU time is dedicated to performing simple Metropo
updates on the intermediate threads. Hence, although
number of failed swap attempts is reduced by the impro

d
g
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EXTENDED STATE-SPACE MONTE CARLO METHODS PHYSICAL REVIEW E63 056701
overlap between adjacent chains, much time is consume
average to obtain an accepted swap. Furthermore, as
swap acceptance ratio increases, there is a tendency fo
composite Markov chain to cycle locally between two ad
cent chains and become trapped. The overall efficiency of
annealed-swapping method is determined by the interp
between the increased computational cost of performing
heating and cooling processes and the improved net ove
of the distribution of proposed configurations. For the s
tems studied in this work, these factors approximately b
ance one another and little differences in efficiency can
observed between the annealed-swapping and sim
swapping procedures.

In order to provide a fair comparison of all methods, e
tensive optimization studies were carried out. An interest
result of these investigations was that swap attempts sh
be executed extremely frequently in the simple-swapping
proach. This result seems surprising in light of the fact t
rapid swaps require short intervals of local Metropolis u
dates which induces strong correlations in the swap dyn
ics of the chains. It appears that, although increasing
length of the local updates tends to destroy correlations,
rate at which correlations are lost is not sufficient to co
pensate for the reduced swap time. The optimal procedur
frequent swap attempts was observed in all systems stu
and appears to be fairly general. This result is encouragin
it suggests that little optimization of the parallel temperi
algorithm is required for each new system.

In the present study, the auxiliary parameter space
taken to be the inverse temperature. In this context, the
terministic procedure used to promote the coupling betw
adjacent chains corresponds to heating and quenching
cesses. Although this implementation of the directed pro
dure was not successful in improving the rate of explorat
of configurational space over the sampling rate of para
tempering, it is possible that a more judicious choice of c
trol parameter would help equilibrate the system along pa
linking high-energy to low-energy states, leading to grea
mobility of composite chain. Further work along these lin
is under way. In addition, the use of Markov chain transiti
matrices operating on an extended state space provid
useful tool in the construction of sampling approaches
has been exploited to improve the efficiency ofab initio-
based Monte Carlo simulations@20#.
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APPENDIX A

In this appendix, we demonstrate that the quenched
portance sampling algorithm outlined in Sec. II A obeys d
tailed balance@12#. The validity of the algorithm can be es
tablished by viewing the expectation ofa(x) in Eq. ~1! as an
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average over a probabilityf in an extended spac
(x1 , . . . ,xn),

ā5E dx1•••dxna~x1! f ~x1 , . . . ,xn!, ~A1!

where we define the probability of the extended state-sp
point (x1 , . . . ,xn) to be the joint probability

f ~x1 , . . . ,xn!5P0~x1!T1~x1→x2!•••Tn21~xn21→xn!.

~A2!

Since theTj are valid transition probabilities, the margin
distribution of f is P0 so that Eq.~A1! holds. Since the de-
tailed balance condition

Tj~x2→x1!5Tj~x1→x2!
Pj~x1!

Pj~x2!
~A3!

is assumed to hold for theTj , Eq. ~A2! can be expressed a

f ~x1 , . . . ,xn!5
P0~x1!

P1~x1!
T1~x2→x1!•••

Pn22~xn21!

Pn21~xn21!

3Tn21~xn→xn21!Pn21~xn!. ~A4!

The quenching procedure generates the extended state
(x1 , . . . ,xn) with probability

g~x1 , . . . ,xn!5Pn~xn!Tn21~xn→xn21!•••T1~x2→x1!,

~A5!

which implies that the correct statistical weightw( i ) for the
point xi5x1 is

w( i )5
f ~x1 , . . . ,xn!

g~x1 , . . . ,xn!
, ~A6!

which yields the weight factor in Eq.~3!.

APPENDIX B

In this appendix, we demonstrate that the anneal
swapping algorithm outlined in Sec. II C obeys detailed b
ance for a composite Markov chain consisting of two prin
pal chains, chain 1 and chain 2. Suppose the principal ch
are initially in statesx̂1 andx̌2, respectively~see Fig. 1!. The
composite chain is defined to be a Markovian sequence
extended phase pointsx̃15( x̂1 ,x̌2) in which the extended
phase points are distributed in the chain according to
limiting distribution P( x̃1)5P1( x̂1)P2( x̌2). The annealed-
swapping method consists of taking the extended statex̃1 and
generating a new trial statex̃25( x̌1 ,x̂2) by a heating and
quenching process. The trial state is then accepted or reje
according to a Metropolis-Hastings procedure. Without lo
of generality, we will assume that there is only one interm
diate distributionP̂i in the heating process and one interm
diate distributionP̌i for the quenching process. We assum
that transition probabilitiesT̂i(x1→x2) andŤi(x1→x2) obey
microscopic reversibility~or detailed balance!:
1-9



di

d
e
a

d
he

si

e
n by

u-

se

rd-
ect-

rlo
cess

ow

u-

SHELDON B. OPPS AND JEREMY SCHOFIELD PHYSICAL REVIEW E63 056701
T̂i~x2→x1!5T̂i~x1→x2!
P̂i~x1!

P̂i~x2!
, ~B1!

where T̂i(x2→x1) is the probability of moving to statex1
from statex2 in the intermediate-heating Markov chain.

We must show that the following detailed-balance con
tion is satisfied:

P~ x̃1 ,x̃2!5P~ x̃2 ,x̃1!, ~B2!

whereP( x̃1 ,x̃2)5P( x̃1)T( x̃1→ x̃2) is the probability of ob-
serving the sequence$x̃1 ,x̃2% in the composite chain, an
T( x̃1→ x̃2) is the transition probability of moving from stat
x̃1 to statex̃2. The transition probability can be expressed

T~ x̃1→ x̃2!5Pg~ x̃1 ,x̃2!Pa~ x̃2ux̃1!, ~B3!

wherePg( x̃1 ,x̃2)5Pg( x̂1 ,x̂2)Pg( x̌2 ,x̌1) is the joint probabil-
ity of generatingx̃2 from x̃1 by the annealing procedure an
Pa( x̃2ux̃1) is the path-dependent probability of accepting t
proposed state x̃2. One can define Pa( x̃2ux̃1)
5min†1,A( x̃2 ,x̃1)‡, where the acceptance matrixA is defined
to be

A~ x̃2 ,x̃1!5
P~ x̃2!Pg~ x̃2 ,x̃1!

P~ x̃1!Pg~ x̃1 ,x̃2!
, ~B4!

and it then follows that

P~ x̃1 ,x̃2!5min†P~ x̃1!Pg~ x̃1 ,x̃2!,P~ x̃2!Pg~ x̃2 ,x̃1!‡

5P~ x̃2 ,x̃1!, ~B5!

showing that detailed balance is satisfied for the compo
Markov chain.

Noting that the conditional probabilityP( x̃2)Pg( x̃2 ,x̃1) of
generating the statex̃1 by the annealing procedure is

P~ x̃2!Pg~ x̃2 ,x̃1!5P1~ x̌1!Ťi~ x̌1→ x̌2!P2~ x̂2!T̂i~ x̂2→ x̂1!

5P1~ x̌1!
P̌i~ x̌2!

P̌i~ x̌1!
Ťi~ x̌2→ x̌1!

3P2~ x̂2!
P̂i~ x̂1!

P̂i~ x̂2!
T̂i~ x̂1→ x̂2!

5
P1~ x̌1!

P1~ x̂1!

P̌i~ x̌2!

P̌i~ x̌1!

P2~ x̂2!

P2~ x̌2!

P̂i~ x̂1!

P̂i~ x̂2!
.
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3P~ x̃1!Pg~ x̃1 ,x̃2!, ~B6!

the acceptance matrix can be written asA( x̂2 ,x̌1)5ŵ3w̌,
where the weightsŵ andw̌ are the statistical weights for th
heating and cooling processes, respectively, and are give

ŵ5
P̂i~ x̂1!

P1~ x̂1!

P2~ x̂2!

P̂i~ x̂2!
, ~B7!

w̌5
P̌i~ x̌2!

P2~ x̌2!

P1~ x̌1!

P̌i~ x̌1!
. ~B8!

Note that all distributions inA( x̂2 ,x̌1) appear as ratios, so
that no normalization factors need to be calculated.

The arguments above establish that the limiting distrib
tion of the composite Markov chain isP5P1P2. This, in
turn, implies that the states composing principal chainj
formed by taking thej th component of the extended pha
points in the composite chain are distributed according toPj
for long chains.

Now consider adding another Monte Carlo update acco
ing to Ťi in the annealing procedure so that the path conn
ing x̌2 to x̌1 is now $x̌2 ,x̌18 ,x̌1%. Since

Ťi~ x̌2→ x̌18!Ťi~ x̌18→ x̌1!

5
P̌i~ x̌18!

P̌i~ x̌2!

P̌i~ x̌1!

P̌i~ x̌18!
Ťi~ x̌1→ x̌18!Ťi~ x̌18→ x̌2!

5
P̌i~ x̌1!

P̌i~ x̌2!
Ťi~ x̌1→ x̌18!Ťi~ x̌18→ x̌2!, ~B9!

it is straightforward to show that any number of Monte Ca
updates may be done at each step in the annealing pro
without modifying the acceptance probability matrixA.

The derivation outlined here is easily generalized to sh
that the proper acceptance matrixA for arbitrary numbers
N̂22, Ň22 of intermediate heating and quenching distrib
tions between initial and final distributionsPi and Pf is A

5ŵ3w̌, where

ŵ5 )
j 51

N̂21
P̂j 11~ x̂j !

P̂j~ x̂j !
, ~B10!

w̌5 )
j 51

Ň21
P̌j~ x̌j !

P̌j 11~ x̌j !
, ~B11!

with P̂N̂5Pf5 P̌Ň and P̂15Pi5 P̌1.
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